Olympiades ENSAE - 1er S 2025

  • Posted on: 8 May 2025
  • By: sbana

Exercice 1

Cet exercice est composé de parties $A$, $B$ et $C$  dans une large mesure indépendantes.
 
Partie A :

On définit par $A$ l'ensemble des fonctions $f\ :\  [0\;,1]\rightarrow \mathbb{R}$ vérifiant les conditions suivantes :

$\bullet\ $Pour tous réels $\alpha$ et $\beta\in[0\;,1]/\alpha <\beta$ si $f(\alpha)\times f(\beta)\leq 0$ alors il existe au moins $\overline{x}]\alpha\;,\beta[$ tel que $f\left(\overline{x}\right)=0$

$\bullet\ f(x)=f(1)=0$

$\bullet\ $Pour tout $x$ réel de l'intervalle $\left[0\;,\dfrac{7}{10}\right]\;,f\left(x+\dfrac{3}{10}\right)\neq f(x)$

Soit $f$ un élément de $A.$

On définit une fonction $h\ :\ \left[0\;,\dfrac{7}{10}\right]\rightarrow\;,\mathbb{R}$ donnée par : $h(x)=f\left(x+\dfrac{3}{10}\right)-f(x)$, pour tout $x\left[0\;,\dfrac{7}{10}\right]$

On suppose que h vérifie la condition $(1)$
 
$(1)$ Montrer que $h(x)$ est de signe constant sur $[0\;,\dfrac{7}{10}]$

$(2)$ Démontrer que l'équation $f(x)=0$ admet au moins sept solutions sur $[0\;,\dfrac{7}{10}]$
 
Partie B :

Les martiens sont les habitants, en nombre éventuellement infini, de la planète Mars.

Vis à vis d'eux-mêmes et de leurs semblables, les martiens sont capables de ressentir deux types d'émotions, qu'ils appellent amour et respect.

Il a été observé que :  

$\bullet\ $Chaque martien aime un et un seul martien, et respecte un et un seul martien.
 
$\bullet\ $Si $A$ aime $B$, alors tout martien qui respecte $A$ aime également $B$
 
$\bullet\ $ Si $A$ respecte $B$, alors tout martien qui aime $A$ respecte également $B.$
 
$\bullet\ $Chaque martien est aimé d'au moins un martien.  

On se propose de vérifier s'il est vrai que chaque martien respecte le martien qu'il aime.
 
Pour chaque martien $x$ , on désigne respectivement par $f(x)$ et $g(x)$ les martiens aimés et respectés par $x$

$(1)$ Montrer que les fonctions $f$ et $g$ sont bien définies de l'ensemble $X$ des martiens sur lui-même.
 
$(2)$ Montrer que $f[g(x)]=f(x)$ et $g[f(x)]=g(x)$ pour tout $x$ dans $X$
 
$(3)$ Montrer finalement que, pour tout $x$, on a $f(x)=g(x)=x$
 
$(4)$ Conclure !

Partie C :

Soit $n\in\mathbb{N}^{\ast}$, $m_{1}$, $m_{2}$, $\ldots$, $m_{n}$ des réels et $\mathrm{e}_{1}$, $\mathrm{e}_{2}$, $\ldots$, $\mathrm{e}_{n}$

des réels strictement, positifs on a :
$$\begin{array}{rcl}\dfrac{m_{1}^{2}}{\mathrm{e}_{1}}+\dfrac{m_{2}^{2}}{\mathrm{e}_{2}}+\ldots+\dfrac{m_{n}^{2}}{\mathrm{e}_{2}}\geq\dfrac{\left(m_{1}+m_{2}+\ldots+m_{n}\right)^{2}}{\mathrm{e}_{1}+\mathrm{2}+\ldots+\mathrm{e}_{n}}\end{array}$$

Cette inégalité est connue sous le nom de l'inégalité des Mauvais Élèves $(IME)$
En appliquant l'$IME$, montrer que :

$(1)$ Si $a_{1}$, $a_{2}$, $\ldots$, $a_{n}$ sont $n$ réels strictement positifs alors :

$\dfrac{1}{a_{1}}+\dfrac{1}{a_{2}}+\ldots+\dfrac{1}{a_{n}}\geq\dfrac{n^{2}}{a_{1}+a_{2}+\ldots+a_{n}}$
 
$(2)$ Si $a$, $b$ et $c$ sont $3$ réels strictement positifs alors :

$\dfrac{a}{a+2c}+\dfrac{b}{b+2a}+\dfrac{c}{c+2b}\geq 1$

$(3)$ Si $x$, $y$ et $z$ sont réels strictement positifs tels que : $\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=1$ alors $xyz\geq 8$

On considère la figure suivante où $ABMN$ et $ARSC$ sont des carrés construits à partir du triangle $ABC$

On construit en outre le parallélogramme $ANA'R$

1. a. Démontrer que $\left(AA'\right)$ est une hauteur du triangle $ABC$

b. Démontrer que $AA'=BC$

2. On considère les parallélogramme $NARA'$, $QBMB'$ et $SCPC'$

Justifier que $\left(AA'\right)$, $\left(BB'\right)$ et $\left(CC'\right)$ sont concourantes.

b. Démontrer que dans un triangle $ABC$, si $M$ désigne le milieu de $[BC]$ alors : $AB^{2}+ac^{2}=2\left(BM^{2}+AM^{2}\right)$ (Théorème d'Apollonius).

c. En déduire que $NR^{2}+QM^{2}+SP^{2}=3\left(AB^{2}+AC^{2}+BC^{2}\right)$

Exercice 3

$\mathbb{R}$ désigne l'ensemble des nombres réels.

Dans ce problème, on cherche à déterminer les applications $f$ définies sur $]0\ ;\ +\infty[$ et à valeurs dans $]0\ ;\ +\infty[$  vérifiant les deux propriétés suivantes :

$\bullet\ $pour tous nombres réels strictement positifs $x$ et $y$, $f[xf(y)]=yf(x)$ ;
 
$\bullet\ f$ est bornée sur $[1\ ;\ +\infty[$ il existe un nombre réel $A$ tel que pour tout nombre réel $x\geq 1$, $f|f(x)|\leq A$

Partie I

Soit $I$ un intervalle de $\mathbb{R}$ et soit $h$ une application définie sur $I$ et à valeurs dans $I$

On dit que est $h$ une involution de $I$ si pour tout nombre réel $x$ dans $I\;,h[h(x)]=x$

1. Donner un exemple d'involution de $\mathbb{R}$ dans R autre que l'identité.

2. Donner un exemple d'involution de $]0\ ;\ +\infty[$ dans $]0\ ;\ +\infty[$ autre que l'identité.   

3. Montrer qu'une involution de $I$ dans $I$ est bijective.

Partie II

Soit $f$ une fonction vérifiant les deux conditions citées au début de l'énoncé.
 
1. Soit deux nombres réels $y_{1}$, $y_{2}$ strictement positifs tels que $f\left(y_{1}\right)=f\left(y_{2}\right).$

Montrer que $y_{1}f(1)=y_{2}f(1)$

2. Montrer que $f$ est injective.
 
3. Montrer que $f[f(1)]=f(1)$ puis $f(1)$ puis que $f(1)=1$
 
4. Montrer que $f$ est une involution de $]0\ ;\ +\infty[$

5. Soient $a$ et $b$ deux réels strictement positifs.

Montrer que $f(ab)=ff(a)f(b)$

Indication : on pourra poser $b=f(y)$

Partie III

On note $F$ l'ensemble des points fixes de $f$ : $F=\lbrace x\in]0\ ;\`+\infty\left[/f(x)=x\right\rbrace$
 
1) Montrer que pour tout $x\in]0\ ;\ +\infty[\;,xf(x)$ est un élément de  $F.$

2. Montrer que $1$ est un élément de $F.$
 
3. Montrer que si $x$ et $y$ sont des éléments de $F$, alors $xy$ et $\dfrac{x}{y}$
 sont également des éléments de $F.$
 
4. Montrer que si $x$ est un élément de $F$, alors pour tout entier naturel $n$, $xn$ est un élément de $F$

5. Montrer que si $x$ est un élément de $F$, alors $x=1$

Indication : on pourra considérer l'application : $\mathbb{N}\rightarrow \mathbb{N}$ définie par $x_{n}x^{n}$

6. Montrer que $F=\lbrace 1\rbrace$
 
7. En déduire $f.$
 
8. Donner enfin toutes les applications répondant au problème posé.

 

 

Niveau: 
Classe: 
Type: 
Série: 

Commentaires

Эта статья полна интересного контента, который побудит вас исследовать новые горизонты. Мы собрали полезные факты и удивительные истории, которые обогащают ваше понимание темы. Читайте, погружайтесь в детали и наслаждайтесь процессом изучения!
Углубиться в тему - https://vivod-iz-zapoya-1.ru/

Между нами говоря, по-моему, это очевидно. Воздержусь от комментариев.
betting company, betting as a previously called as a betting company, <a href=https://mostbet-azerbaijan.website.yandexcloud.net/>https://www.mostbet-... Kazino icmal? has become a modern gaming portal.

Вас посетила просто отличная идея
The games went smoothly how on desktop computers, similarly on mobile devices, and the assistance program became a valid reason then so that the winlion <a href=https://cultmtl.com/2025/08/casino-and-betting-bonus-guide-for-canada-ho... in Canada</a> keeps coming back.

кухни на заказ в спб цены <a href=http://www.kuhni-spb-2.ru>http://www.kuhni-spb-2.ru</a> .

экстренный вывод из запоя краснодар
<a href=https://narkolog-krasnodar016.ru>narkolog-krasnodar016.ru</a>
вывод из запоя краснодар

Прошу прощения, что вмешался... У меня похожая ситуация. Пишите здесь или в PM.
Заметим, <a href=https://mellwin-site1.top/>Mellstroy casino</a> что для 1вин характерно размещать не наилучший РТП у многих провайдеров. Последнюю сведения вы когда захотите подыщите у нас на сайте.

организация видеотрансляций <a href=https://zakazat-onlayn-translyaciyu.ru>организация видеотрансляций</a> .

все микрозаймы онлайн <a href=http://zaimy-28.ru/>все микрозаймы онлайн</a> .

аренда мини экскаватора в москве цена <a href=https://arenda-mini-ekskavatora-v-moskve.ru/>аренда мини экскаватора в москве цена</a> .

Извиняюсь, что ничем не могу помочь. Надеюсь, Вам здесь помогут. Не отчаивайтесь.
каталог охватывает неравные стили и механики. поиграть легко в демонстрационные и на реальные <a href=https://mellwin-slots2.top/>Mellstroy зеркало</a> ставки. Встречаются челленджи под футбол и теннис.

By applying these methods, primexbt <a href=https://edahomehealthcare.com/exploring-primexbt-coins-opportunities-and... will enhance the effectiveness of their implementation and minimize the impact of adverse changes in the market.

в среде стилистов термин "шоппинг-сопровождение" принято писать с удвоенной "п". в связи с тем, что термин англоязычное, многие из нас слышали, <a href=http://partlaser.com/en/full-enclosed-exchangeable-worktable-gs-3015ce/>... что в английском варианте оно пишется (shopping) с двумя буквами «p».

Извините за то, что вмешиваюсь… Мне знакома эта ситуация. Можно обсудить. Пишите здесь или в PM.
lower in categories <a href=https://ehumplus.com/mega-sic-bo-au-the-ultimate-dice-game-experience/>h..., you will be aware of ten institution for real money in Australia, the choice of which has fallen to our team after countless hours of research.

Pages

Ajouter un commentaire

Plain text

  • Aucune balise HTML autorisée.
  • Les adresses de pages web et de courriels sont transformées en liens automatiquement.
  • Les lignes et les paragraphes vont à la ligne automatiquement.